Markov Chain K-Means Cluster Models and Their Use for Companies’ Credit Quality and Default Probability Estimation
نویسندگان
چکیده
This research aims to determine the existence of inflection points when companies’ credit risk goes from being minimal (Hedge) high (Ponzi). We propose an analysis methodology that determines probability hedge credits migrate speculative and then Ponzi, through simulations with homogeneous Markov chains k-means clustering method thresholds migration among clusters. To prove this, we used quarterly financial data a sample 35 public enterprises over period between 1 July 2006 28 March 2020 (companies listed on USA, Mexico, Brazil, Chile stock markets). For simplicity, make assumption no revolving for companies they face their next payment only operating cash flow. found Ponzi (1) have 0.79 average default, while ones had (0) 0.28, (−1) 0.009, which are inflections point were looking for. Our work’s main limitation lies in not considering entities’ behavior granting altered states (credit relaxation due supply excess).
منابع مشابه
analysis of ruin probability for insurance companies using markov chain
در این پایان نامه نشان داده ایم که چگونه می توان مدل ریسک بیمه ای اسپیرر اندرسون را به کمک زنجیره های مارکوف تعریف کرد. سپس به کمک روش های آنالیز ماتریسی احتمال برشکستگی ، میزان مازاد در هنگام برشکستگی و میزان کسری بودجه در زمان وقوع برشکستگی را محاسبه کرده ایم. هدف ما در این پایان نامه بسیار محاسباتی و کاربردی تر از روش های است که در گذشته برای محاسبه این احتمال ارائه شده است. در ابتدا ما نشا...
15 صفحه اولDependence of Default Probability and Recovery Rate in Structural Credit Risk Models: Empirical Evidence from Greece
The main idea of this paper is to study the dependence between the probability of default and the recovery rate on credit portfolio and to seek empirically this relationship. We examine the dependence between PD and RR by theoretical approach. For the empirically methodology, we use the bootstrapped quantile regression and the simultaneous quantile regression. These methods allow to determinate...
متن کاملFaster K-Means Cluster Estimation
K-means is a widely used iterative clustering algorithm. There has been considerable work on improving k-means in terms of mean squared error (MSE) and speed, both. However, most of the k-means variants tend to compute distance of each data point to each cluster centroid for every iteration. We propose two heuristics to overcome this bottleneck and speed up k-means. Our first heuristic predicts...
متن کاملdependence of default probability and recovery rate in structural credit risk models: empirical evidence from greece
the main idea of this paper is to study the dependence between the probability of default and the recovery rate on credit portfolio and to seek empirically this relationship. we examine the dependence between pd and rr by theoretical approach. for the empirically methodology, we use the bootstrapped quantile regression and the simultaneous quantile regression. these methods allow to determinate...
متن کاملA Default Probability Estimation Model: An Application to Japanese Companies
On the assumption that asset value of a company is the sum of total market value of stock and debt value, we estimate a mean value and variance of the sum with the first moment and second moment. We also assume a new variable for which fluctuation during an evaluation period conforms to these moments and follows geometric Brownian motion. Then we construct a default probability estimation model...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics
سال: 2021
ISSN: ['2227-7390']
DOI: https://doi.org/10.3390/math9080879